
STATICA

CONCETTI DI BASE ALLA MECCANICA DELLE STRUTTURE

SECONDA EDIZIONE

SOFTWARE INCLUSO

STRUTTURE INTELAIATE PIANE E GEOMETRIA DELLE MASSE

F.A.Q. (domande e risposte sui principali argomenti)

Filippo Cucco

LEZIONI DI STATICA

ISBN 13 978-88-8207-548-4 EAN 9 788882 075484

Quaderni, 18 Seconda edizione, febbraio 2014

Cucco, Filippo <1951->

Lezioni di statica / Filippo Cucco. – 2. ed. – Palermo : Grafill, 2014.

(Quaderni ; 18)

ISBN 978-88-8207-548-4 1. Statica.

531.12 CDD-22

SBN Pal0265843

CIP – Biblioteca centrale della Regione siciliana "Alberto Bombace"

Il presente volume è **disponibile anche in versione eBook** (formato *.pdf) compatibile con **PC**, **Macintosh**, **Smartphone**, **Tablet**, **eReader**.

Per l'acquisto di eBook e software sono previsti pagamenti con conto corrente postale, bonifico bancario, carta di credito e paypal. Per i pagamenti con carta di credito e paypal è consentito il download immediato del prodotto acquistato.

Per maggiori informazioni inquadra con uno smartphone o un tablet il codice QR sottostante.

I lettori di codice QR sono disponibili gratuitamente su Play Store, App Store e Market Place.

© GRAFILL S.r.l.

Via Principe di Palagonia, 87/91 – 90145 Palermo Telefono 091/6823069 – Fax 091/6823313 Internet http://www.grafill.it – E-Mail grafill@grafill.it

Finito di stampare nel mese di febbraio 2014

presso Tipolitografia Luxograph S.r.l. Piazza Bartolomeo Da Messina, 2/e – 90142 Palermo

Tutti i diritti di traduzione, di memorizzazione elettronica e di riproduzione sono riservati. Nessuna parte di questa pubblicazione può essere riprodotta in alcuna forma, compresi i microfilm e le copie fotostatiche, né memorizzata tramite alcun mezzo, senza il permesso scritto dell'Editore. Ogni riproduzione non autorizzata sarà perseguita a norma di legge. Nomi e marchi citati sono generalmente depositati o registrati dalle rispettive case produttrici.

INDICE

	RICE	HAMI DI ALGEBRA DELLE MATRICI	p.						
	1.1.	1. Matrici rettangolari							
	1.2.	Matrici quadrate	"						
		1.2.1. Determinante	"						
		1.2.2. Complemento algebrico	″						
	1.3.	Algebra delle matrici	"						
		1.3.1. Trasposta di una matrice	"						
		1.3.2. Matrice unità e matrice nulla	"						
		1.3.3. Somma di matrici	"						
		1.3.4. Differenza di matrici	"						
		1.3.5. Prodotto di matrici	"						
		1.3.6. Divisione di matrici	"						
		1.3.7. Esercizi da svolgere	"						
	1.4.	Sistemi lineari di equazioni	"						
	1	1.4.1. Soluzione di un sistema determinato	"						
		1.4.2. Sistemi impossibili	"						
		1.4.3. Sistemi indeterminati	"						
		1.4.4. Sistemi "travestiti"	"						
		1.4.5. Uso delle matrici nella soluzione dei sistemi di equazioni							
		lineari	"						
0.	ELE: 3.1.	MENTI DI TEORIA DEI VETTORI	"						
		Somma grafica	"						
		Somma grafica	"						
	3.2.	Somma analitica	"						
	3.2. 3.3.	Somma analitica Prodotto scalare	" "						
	3.2. 3.3. 3.4.	Somma analitica Prodotto scalare Tipi di vettori							
	3.2. 3.3. 3.4. 3.5.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori	"						
	3.2. 3.3. 3.4. 3.5. 3.6.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati	"						
	3.2. 3.3. 3.4. 3.5. 3.6. 3.7.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari	"						
	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza	" "						
	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza La coppia	" " "						
	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza	" " " " "						
0.	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza La coppia	" " " " "						
0.	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza La coppia Principio di equivalenza e di riducibilità	" " " " " " " " " " " " " " " " " " " "						
0.	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza La coppia Principio di equivalenza e di riducibilità	" " " " " " " " " " " " " " " " " " " "						
	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza La coppia Principio di equivalenza e di riducibilità HAMI DI MECCANICA Condizioni cinematiche e meccaniche di quiete	" " " " " " " " " " " " " " " " " " " "						
	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza La coppia Principio di equivalenza e di riducibilità HAMI DI MECCANICA Condizioni cinematiche e meccaniche di quiete	" " " " " " " " " " " " " " " " " " " "						
.0.	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. RICH 4.1.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza La coppia Principio di equivalenza e di riducibilità HAMI DI MECCANICA Condizioni cinematiche e meccaniche di quiete I vincoli nel piano (classificazione cinematica) 5.1.1. I vincoli semplici							
	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. RICH 4.1.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza La coppia Principio di equivalenza e di riducibilità HAMI DI MECCANICA Condizioni cinematiche e meccaniche di quiete I vincoli nel piano (classificazione cinematica)							
	3.2. 3.3. 3.4. 3.5. 3.6. 3.7. 3.8. 3.9. 3.10. RICH 4.1.	Somma analitica Prodotto scalare Tipi di vettori Somma di cursori Somma di vettori applicati Proprietà dei poligoni funicolari Momento di una forza La coppia Principio di equivalenza e di riducibilità HAMI DI MECCANICA Condizioni cinematiche e meccaniche di quiete I vincoli nel piano (classificazione cinematica) 5.1.1. I vincoli semplici							

		5.1.2. I vinco	li doppi
		5.1.2.1	= =
		5.1.2.2	. L'incastro scorrevole
		5.1.3. I vinco	li tripli
		5.1.3.1	
	5.2.	I vincoli nello si	pazio (classificazione cinematica)
	5.3.		no (classificazione meccanica)
			i diffusi e vincoli puntiformi
			ni del carrello, della biella e del quadripendolo
			ni della cerniera, dell'incastro scorrevole e perfetto
0.	CAL	COLO DELLE I	REAZIONI DEI VINCOLI
	6.1.	Classificazione	dei corpi vincolati
	6.2.		rze reattive in una trave isostatica
	6.3.		rze reattive in una trave ipostatica
	6.4.		rze reattive in una trave iperstatica
	6.5.		rze reattive in una trave ipercinestatica
	6.6.		calcolo delle reazioni
	6.7.		
	6.8.		e forze concentrate
	6.9.		natura geometrica
	0.7.	•	ni sui triangoli rettangoli della trigonometria
			na dei lati paralleli o ortogonali
	6.10.		empi complessi
	0.10.		io 1.6
		1	io 2.6
	6.11.		Lavori Virtuali
	0.11.		li libertà e Parametri di Lagrange
			oni infinitesime: semplificazioni
			ema di Eulero per i moti rigidi e infinitesimi ne
			ema di Edicio per i moti rigidi e mininesimi ne
			onente di spostamento a causa di una rotazione ri
		1	mente di spostamento a causa di una rotazione il
			oni di equilibrio in forma matriciale scritte tramite
			.VV
).	I VIN	COLI INTERN	I
			cinematica dei vincoli interni
	7.2.	Classificazione	meccanica dei vincoli interni
	7.3.		anomali
			niera interna multipla
			stro interno come vincolo di continuità
0.	CAL	COLO DELLE F	REAZIONI DEI VINCOLI ESTERNI ED EQUA
			RELATIVI
	8.1.	Algoritmo gener	rale per il calcolo delle reazioni dei vincoli esterni
	8.2	Esempio 1 8	-

13.1. Equazioni di equilibrio dei nodi......

190

14.0.	LA REAZIONE DIFFUSA DEL VINCOLO DI CONTINUITÀ: LE TENSIONI							
		Relazione tra componenti di tensione e caratteristiche della sollecita-	•	197				
		zione						
15.0.								
	15.1.							
		15.1.2. Il baricentro di una figura	"	207				
		15.1.3. Il Teorema di Varignon	"	207				
		15.1.4. Coordinate del baricentro	"	209				
		15.1.5. Il Teorema di trasposizione	"	212				
	15.2. Momento d'inerzia assiale							
	15.2.1. Il Teorema di trasposizione							
		15.2.2. Gli assi principali d'inerzia ed i momenti d'inerzia principali	,,	220				
		15.2.3. Un surrogato del Teorema di Varignon	,,	220				
		15.2.4. Il baricentro dei momenti statici	,,	221				
	15.3.		,,	223				
	13.3.	15.3.1. L'ellisse centrale d'inerzia	,,	225				
		15.3.2. Usare l'ellisse centrale d'inerzia	,,	230				
		15.3.2.1. Data l'ellisse e la retta trovare il baricentro dei		230				
		momenti statici	,,	230				
		15.3.2.2. Data l'ellisse e il baricentro dei momenti statici		230				
			,,	231				
		trovare la retta corrispondente	,,	231				
	15 /		,,	238				
	15.4.	Momento d'inerzia polare		238				
		15.4.1. Momento d'inerzia polare come somma di due momenti d'inerzia assiali	,,	240				
	15.5.		,,	243				
	13.3.	Momento d'inerzia centrifugo	,,					
	15 (15.5.1. Il Teorema di Trasposizione	,,	247				
	15.6.	Rotazione del sistema di riferimento		249				
		15.6.1. Calcolo della retta coniugata di una retta generica assegna-	,,	254				
		ta		254				
16.0.	LEGGI COSTITUTIVE							
	16.1.	Comportamento elastico	"	258				
		16.1.1. Comportamento elastico lineare	"	258				
		16.1.2. Comportamento elastico non lineare						
	16.2.	<u>.</u>						
	16.3.	La Legge di Hooke	"	260				
		16.3.1. Prova a trazione e compressione	″	260				
		16.3.1.1. Prova a trazione e compressione nei materiali duttili	,,	261				
		16.3.1.2. Prova a trazione e compressione nei materiali		201				
		fragili	"	264				
		16.3.1.3. Prova a taglio	"	265				
		16.3.1.4 La legge di Hooke generalizzata	"	268				

17.0.	TEO	RIA DELLA TRAVE	p.	273			
	17.1.		" "	27:			
		17.1.2. Equazioni di compatibilità, l'ipotesi di Navier	″	27			
		17.1.3. Equazione costitutiva, legge di Hooke	″	270			
		17.1.4 Legge di variazione della reazione distribuita	"	27			
	17.2.	La Flessione Semplice	"	279			
		17.2.1. Equazioni di compatibilità, l'ipotesi di Navier	"	279			
		17.2.2. Equazione costitutiva, legge di Hooke	"	28			
		17.2.3. Legge di variazione della reazione distribuita	"	28			
		17.2.4. Equazioni di equilibrio e calcolo delle σ	"	28			
		17.2.5. Strutture resistenti per forma	"	28			
		17.2.6. Flessione retta e flessione deviata	"	28			
		17.2.7. Flessione deviata come somma di due flessioni rette	"	28			
	17.3.	La Torsione semplice	"	289			
		17.3.1. Equazioni di compatibilità, l'ipotesi di Navier	"	289			
		17.3.2. Equazione costitutiva, legge di Hooke	"	29			
		17.3.3. Legge di variazione della reazione distribuita	"	29			
		17.3.4. Equazioni di equilibrio e calcolo delle τ	"	292			
		17.3.5. Sezioni di uso frequente:sezione rettangolare	"	29			
		17.3.6. Sezioni di uso frequente:sezione composta da rettangoli	"	29			
		17.4.6. Le sezioni cave a parete sottile: la teoria di Bredt	"	29			
	17.4.	Il Taglio	"	29			
		17.4.1. Legge di variazione delle tensioni al variare della corda	"	304			
		17.4.1.1. Sezione rettangolare	"	304			
		17.4.1.2. Sezioni composte da rettangoli	"	30:			
		17.4.1.3. Sezione triangolare	"	30			
	17.5.	Sforzo normale e flessione	"	309			
		17.5.1 Sforzo Normale e Flessione come Sforzo Normale Eccen-					
		trico	"	31			
		17.5.2 Approccio diretto	"	310			
		17.5.2.1. Equazioni di compatibilità, l'ipotesi di Navier.	"	31			
		17.5.2.2. Equazione costitutiva, legge di Hooke	"	31			
		17.5.2.3. Legge di variazione della reazione distribuita	"	31			
		17.5.2.4. Equazioni di equilibrio e calcolo delle σ	″	31			
		17.5.2.5. Sforzo normale eccentrico (S.N.E.) retto e de-					
		viato	″	32			
		17.5.2.5.1. S.N.E. deviato come somma di uno					
		Sforzo Normale semplice e due fles-					
		sioni rette	"	32			
18.0.	STAT	O DI TENSIONE NEL PUNTO E VERIFICHE DI RESISTENZA	″	32:			
	18.1.	Cerchio di Mohr	"	33			
	18.2.	Verifiche di resistenza.	″	33:			
19.0.	VERIFICHE DI RESISTENZA: APPLICAZIONI NUMERICHE						
	19.1.	Esempio 1.19	″	34			
	19.2.	Esempio 2.19.	″	34			

	19.3.	Esempio 3.19							
	19.4.	Esempio 4.19							
	19.5.	Esempio 5.19							
A.0.	APPE	ENDICE A: PROGRAMMA TELAI PIANI							
	A.1.	L'ambiente grafico di lavoro							
	A.2.	Impostazione delle fasi di lavoro							
		A.2.1. Generazione dello schema strutturale							
	A.3.	Inserimento o modifica per elemento singolo							
		A.3.1. Inserimento/modifica dati dei nodi							
		A.3.2. Inserimento/modifica dati delle travi							
		A.3.2.1. Prima pagina tabella dati							
		A.3.2.2. Seconda pagina tabella dati							
	A.4.	Inserimento/modifica dati tramite menù contestuale o copia e incolla							
	A.5.	Inserimento o modifica veloce							
	A.6.	Bottoni di generazione grafica							
	A.7.	Bottoni di visualizzazione							
	A.8.	Bottoni di verifica							
	A.9.	I menù a discesa							
	A.10.	Esempio numerico							
B.0.	APPE	ENDICE B: PROGRAMMA GEOMETRIA DELLE MASSE							
	B.1.	Generazione del contorno della sezione							
	B.2.	Inserimento dei vertici di uno o più poligoni							
	B.3.	Inserimento rettangoli a lati paralleli alla griglia							
	B.4.	Inserimento rettangoli inclinati							
	B.5.	Creazione di poligoni regolari ed archi pieni							
	B.6.	Modifica del contorno della figura composta da uno o più poligoni.							
		B.6.1. Traslazione							
		B.6.2. Rotazione della sezione							
		B.6.3. Spostamento dei vertici della sezione							
		B.6.4. Assegnazione diretta dell'inclinazione relativa tra due dei							
		lati di un poligono							
	B.7.	Allineamento dei vari poligoni							
		B.7.1. Allineamento in orizzontale e verticale							
		B.7.1.1. Allineamento in verticale ed orizzontale secon-							
		do la direzione fissata del lato contiguo							
		B.7.1.2. Allineamento in verticale ed orizzontale di un							
		poligono rispetto ad un vertice							
	B.8.	Eliminazione dei vertici							
	B.9.	Aggiunta di nuovi vertici							
	B.10.	- · · · · · · · · · · · · · · · · · · ·							
	B.11.								
		Fusione di 2 poligoni							
	B.13.	Punti di intersezione di 2 poligoni							
		Nodi all'intersezione di due lati							
	B.15.	Separazione di un poligono in 2 poligoni							

	Taglio di un poligono
	Creazione di poligoni cavi a spessore costante
	Creazione di fori
	Creazione e gestione di un archivio di sezioni
	Calcolo delle caratteristiche geometriche
	Calcolo del momento d'inerzia rispetto ad una retta qualunque Menù a discesa
Introduzione	ZIONE DEL SOFTWARE ALLEGATO
Introduzione Requisiti mir	imi hardware e software
Introduzione Requisiti mir Download de	
Introduzione Requisiti mir Download de Installazione	imi hardware e software

1.0 RICHIAMI DI ALGEBRA DELLE MATRICI

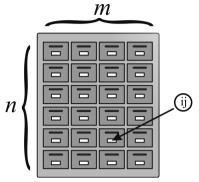


Fig. 1.1

Una *matrice* è una specie di cassettiera formata di n file orizzontali di cassetti (righe) e di m file verticali (colonne); all'interno di ciascun cassetto si può introdurre tutto quello che si vuole: ad es. dei numeri (Fig. 1.1). Ciascun contenitore ha un'etichetta di riconoscimento che può racchiudere un nome (Ciccio, Mario, Filippo.....) oppure un numero di identificazione formato di due cifre (indici)¹: di cui la prima, i, indica sempre la riga di appartenenza, mentre la seconda, i, la colonna.

Ciò che sta all'interno del cassetto generico prende il nome di *elemento* e si indica usualmente con una lettera minuscola seguita dai due indici *i* e *j*

 (a_{ij}) . Il contenuto del cassetto indicato in Fig.1.1 sarebbe a_{53} : cioè ciò che sta dentro il contenitore che si trova all'incrocio della 5[^] riga e della 3[^] colonna.

Si chiama *ordine* di una matrice, e si indica con *nxm*, il numero di righe e di colonne di cui essa è formata: così, ad es., una matrice di ordine 5x4 (cinque per quattro) sarà una tabella formata da 5 righe e 4 colonne.

Le matrici, che per noi, da questo momento in poi, saranno delle tabelle di numeri, possono classificarsi, in base alla loro forma, in

- Matrici rettangolari
- Matrici auadrate

1.1 Matrici rettangolari

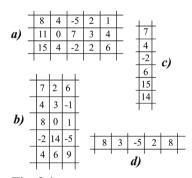


Fig. 2.1

Una matrice si dice rettangolare quando il numero di righe è diverso dal numero delle colonne $n \neq m$; essa è rettangolare bassa (Fig. 2.1a) se le colonne sono maggiori delle righe (m > n); rettangolare alta (Fig. 2.1b) se le righe sono maggiori delle colonne (n > m). Una matrice rettangolare alta con una sola colonna (Fig. 2.1c) si chiama matrice colonna, mentre, una matrice rettangolare bassa con un sola riga (Fig. 2.1d) si chiama matrice riga.

Le matrici riga e colonna prendono anche il nome di *vettori*, in quanto, come vedremo nel seguito, verranno usate proprio per rappresentare analiticamente delle entità fisiche che prendono il nome di vettori.

¹ Nel noto gioco della *Battaglia Navale* ogni casella resta proprio identificata dal nome della riga e della colonna di appartenenza.

1.2 Matrici quadrate

Una matrice si dice *quadrata* quando il numero delle righe è uguale al numero delle colonne (n=m); ovviamente tali matrici non si differenziano più in base alla forma ma in

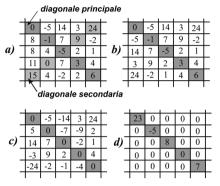
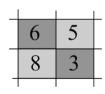


Fig. 3.1

base al contenuto. Le due diagonali di una matrice quadrata prendono rispettivamente il nome di diagonale principale e diagonale secondaria (Fig. 3.1a).

Una matrice si dice *generica* quando i suoi elementi sono collocati all'interno di essa senza alcuna regola (Fig.3.1a); si dice *simmetrica* quando gli elementi disposti simmetricamente rispetto alla diagonale principale sono uguali $(a_{ij}=a_{ji}, \text{Fig.3.1b})$; si dice *antisimmetrica* (o *emisimmetrica*) se gli elementi disposti simmetricamente rispetto alla diagonale principale sono tali che sommati danno zero $(a_{ij}+a_{ji}=0)$. Ciò com-


porta che gli elementi simmetrici sono l'uno l'opposto dell'altro e gli elementi sulla diagonale principale sono tutti nulli $(a_{ij}=-a_{ji} \text{ per } i\neq j \text{ e } a_{ij}=0 \text{ per } i=j, \text{ Fig. 3.1c}).$

Una matrice si dice *diagonale* se gli unici elementi diversi da zero giacciono sulla diagonale principale ($a_{ij}=0$ per $i\neq j$, Fig.3.1d).

Ovviamente esistono anche altri tipi di matrici quadrate ma, per i nostri scopi, è sufficiente soltanto la conoscenza di quelli sopra elencati.

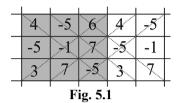
1.2.1 II determinante

Le matrici quadrate hanno anche una particolarità che non è posseduta da quelle rettangolari: da esse è possibile estrarre un numero (ottenuto eseguendo una particolare se-

$$D = (6x3)-(8x5) = -22$$

Fig. 4.1

rie di operazioni sugli elementi della matrice stessa²) che prende il nome di *determinante*. L'estrazione del determinante è un lavoro abbastanza complesso e richiede lo sviluppo di un gran numero di operazioni elementari di somma e prodotto. C'è da sottolineare che l'impiego delle matrici non è affatto orientato al calcolo manuale ma a quello automatico: i microprocessori dei moderni personal computer sono in grado di eseguire miliardi di operazioni elementari al secondo. Tuttavia è utile, per poter svolgere delle semplici applicazioni numeriche, impara-

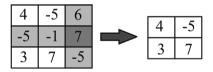

re, quantomeno, ad estrarre il determinante di una matrice 2x2 e di una matrice 3x3.

In una matrice 2x2 il determinante D si ottiene semplicemente effettuando il prodotto degli elementi della diagonale principale e sottraendo ad esso il prodotto degli elementi della diagonale secondaria (Fig. 4.1).

Per il calcolo del determinante di una matrice 3x3 si può applicare la cosiddetta *regola di Sarrus*. Si comincia con l'ampliare la matrice aggiungendo due nuove colonne, che altro non sono che la ripetizione delle prime due (Fig.5.1). Nella matrice allargata si in-

² Si vuole volutamente evitare l'uso di un linguaggio rigoroso per facilitare l'acquisizione di alcuni concetti.

dividuano 3 diagonali principali e 3 diagonali secondarie: si esegue la somma dei prodotti degli elementi delle 3 diagonali principali e, a questo valore, si sottrae il numero che si ottiene effettuando la somma dei prodotti delle 3 diagonali secondarie.


$$D = \{[(4)x(-1)x(-5)] + [(-5)x(7)x(3)] + [(6)x(-5)x(7)]\} - \{[(3)x(-1)x(6)] + (-7)x(7)x(4)] + [(-5)x(-5)x(-5)]\} = -348$$

Il determinante è un numero che può risultare positivo, negativo o nullo. Se il determinante è diverso da zero la matrice si dice *non singolare*, mentre, se il determinante è nullo la matrice si dice *singolare*.

1.2.2 Complemento algebrico

In una matrice quadrata si definisce *complemento algebrico* dell'elemento a_{ij} , il determinante della matrice che si ottiene eliminando la i-ma riga e la j-ma colonna, avendo cura di cambiarne il segno se la somma degli indici i+j risulta dispari.

Data la matrice quadrata di Fig.6.1, calcolare il complemento algebrico C_{23} dell'elemento a_{23} . Si elimina la 2^{\wedge} riga e la 3^{\wedge} colonna della matrice e si calcola il determinante della matrice 2x2 rimanente. Siccome, 2+3=5, è un numero dispari, il determinante ottenuto (43) si cambia di segno.

$$C_{23} = -\{[(4)x(7)]-[(3)x(-5)]\} = -43$$

Fig. 6.1

1.3 Algebra delle matrici

Le matrici possono essere trattate come se fossero dei numeri sui generis, cioè per es-

$$\underline{\mathbf{A}} = \begin{bmatrix}
8 & 4 & -5 & 2 & 1 \\
11 & 0 & 7 & 3 & 4 \\
15 & 4 & -2 & 2 & 6
\end{bmatrix}$$

$$\underline{\mathbf{B}} = \begin{bmatrix}
7 \\
4 \\
-2 \\
6 \\
15 \\
14
\end{bmatrix}$$

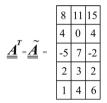

se è possibile definire le quattro operazioni algebriche fondamentali: *somma*, *differenza*, *prodotto* e *divisione*. Così come nell'*Algebra ordinaria* i numeri vengono rappresentati con dei simboli (lettere minuscole dell'alfabeto latino), altrettanto occorre fare nell'*Algebra matriciale*. Per evitare di far confusione tra numeri e matrici, queste ultime vengono rappresentate simbolicamente con delle lettere

Fig. 7.1 rappresentate simbolicamente con delle lettere maiuscole sottolineate. Una matrice qualunque (rettangolare o quadrata che sia) di ordi-

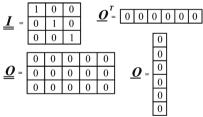
ne $n \times m$ viene indicata con una doppia sottolineatura $\underline{\underline{A}}$ (Fig.7.1), mentre, una matrice colonna di ordine $n \times 1$ viene indicata con una semplice sottolinea B.

Ovviamente le 4 operazioni dell'algebra matriciale hanno ben poco a che vedere con le usuali operazioni algebriche cui siamo abituati. Una prima particolarità è quella che non sempre è possibile eseguire una data operazione tra due matrici, esistono delle regole, dette *regole di conformità*, che stabiliscono le caratteristiche che devono avere le due matrici affinché si possa operare su di esse.

1.3.1 Trasposta di una matrice

$$\underline{\underline{\boldsymbol{B}}}^T = \underline{\underline{\boldsymbol{B}}} = \boxed{7 | 4 | -2 | 6 | 15 | 14}$$

Fig. 8.1


Si definisce trasposta di una matrice \underline{A} , di ordine nxm, un'altra matrice, di ordine mxn, che si ottiene da quella data scambiando le righe con le colonne. La matrice trasposta si indica o con una T ad esponente, oppure tramite una tilde posta sul nome. Di solito le trasposta non vengono rappresentate con un simbolo trasposta delle corrispondenti matrici colonna. In Fig.8.1 sono riportate le trasposte delle matrici di Fig.7.1.

1.3.2 Matrice unità e matrice nulla

Nell'ambito dell'algebra ordinaria esistono due numeri particolari che sono $\mathbf{1}$ e $\mathbf{0}$.

La particolarità dell'uno è che esso è il solo numero ad essere *indifferente* alle operazioni di prodotto e quoziente. Un qualunque numero moltiplicato o diviso per *I* rimane sempre inalterato.

La particolarità dello zero è che esso è il solo numero *indifferente* alle altre due operazioni di somma e differenza. Un qualunque numero a cui si somma o si sottrae lo zero rimane invariato.

Esistono due matrici che si comportano in ugual maniera? Esistono, cioè, due matrici che risultano indifferenti alle operazioni di prodotto e quoziente e di somma e differenza? Sì, queste matrici esistono e prendono rispettivamente il nome di matrice unità (o identità) e di matrice nulla.

La matrice unità, che si indica sempre con $\underline{\underline{I}}$, è una particolare matrice diagonale, di dimensioni n qualsivoglia, in cui tutti gli elementi della diago-

Fig. 9.1 qualsivoglia, in cui tutti gli elementi della diagonale principale sono uguali ad I (Fig. 9.1). La matrice nulla è, invece, una qualunque matrice di ordine $n \times m$ piena di zeri e che si rappresenta sempre con la lettera O

1.3.3 Somma di matrici

Date due matrici \underline{A} e \underline{B} , la loro somma si indica con

$$\underline{C} = \underline{A} + \underline{B}$$

	<u>C</u>		_		<u>A</u>		+		<u>B</u>	
13	7	11		1	4	6		12	3	5
11	11	2		2	3	2		9	8	0
-7	12	-1	=	-5	7	-2	+	-2	5	1
10	5	11		4	0	4		6	5	7
12	13	12		8	11	15		4	2	-3

 $\underline{\underline{C}} = \underline{\underline{A}} + \underline{\underline{B}}$

Fig. 10.1

dove $\underline{\underline{A}}$ e $\underline{\underline{B}}$ sono le *matrici addende* e $\underline{\underline{C}}$ è la *matrice somma*. Le matrici addende sono *conformi* alla somma solo se sono dello stesso ordine, cioè se hanno lo stesso numero di righe e di colonne. La matrice somma è una matrice, pure dello stesso ordine, i cui elementi c_{ij} sono dati dalla somma degli elementi omologhi delle due matrici: $a_{ij}+b_{ij}$.

Per sommare due matrici basta sovrapporle e sommare gli elementi corrispondenti (Fig. 10.1).

La somma tra matrici gode delle stesse proprietà della somma nell'algebra ordinaria, cioè *proprietà associativa*

$$\underline{\underline{A}} + \underline{\underline{B}} + \underline{\underline{C}} + \underline{\underline{D}} = (\underline{\underline{A}} + \underline{\underline{B}}) + (\underline{\underline{C}} + \underline{\underline{D}})$$

e proprietà commutativa

$$\underline{A} + \underline{B} + \underline{C} + \underline{D} = \underline{D} + \underline{C} + \underline{B} + \underline{A}$$

inoltre, la *trasposta di una somma* di matrici è uguale alla *somma delle trasposte* delle singole matrici

$$\left(\underline{\underline{A}} + \underline{\underline{B}} + \underline{\underline{C}} + \underline{\underline{D}}\right)^T = \underline{\underline{A}}^T + \underline{\underline{B}}^T + \underline{\underline{C}}^T + \underline{\underline{D}}^T$$

1.3.4 Differenza di matrici

Date due matrici \underline{A} e \underline{B} , la loro differenza si indica

$$\underline{C} = \underline{A} - \underline{B}$$

Tutto ciò che è stato detto per la somma vale anche per la differenza. L'unica diversità è che l'elemento generico c_{ij} della *matrice differenza* è dato dalla differenza -e non più dalla somma- degli elementi omologhi delle due matrici: a_{ij} - b_{ij} .

1.3.5 prodotto di matrici

Date due matrici $\underline{\underline{A}}$ e $\underline{\underline{B}}$, il loro prodotto si indica

$$\underline{C} = \underline{\underline{A}} \cdot \underline{\underline{B}}$$

Dove $\underline{\underline{C}}$ è la matrice prodotto, $\underline{\underline{A}}$ è la matrice moltiplicanda e $\underline{\underline{B}}$ è la matrice moltiplicatore. Le due matrici sono conformi al prodotto se le colonne della prima matrice (moltiplicanda) sono uguali alle righe della seconda matrice (moltiplicatore). La matrice prodotto è una matrice che ha tante righe quante sono quelle della prima matrice e tante colonne quante sono quelle della seconda.

L'elemento generico c_{ij} si ottiene dalla somma dei prodotti degli elementi della riga *i-esima* della prima matrice per la colonna *j-esima* della seconda (Fig. 11.1)

Il prodotto tra matrici gode della proprietà associativa

$$\underline{\underline{C}} = \underline{\underline{A}} \times \underline{\underline{B}}$$

$$28 | 46 | 8 | 28 |
26 | 15 |
22 | 29 |
16 | 52 |$$

$$\underline{C}_{31} = \begin{bmatrix} -5 \\ 7 \\ -2 \end{bmatrix} \times \begin{bmatrix} 4 & 2 \\ 6 & 5 \\ -2 & 5 \end{bmatrix}$$

$$\underline{C}_{31} = \begin{bmatrix} -5 \\ 7 \\ -2 \end{bmatrix} \times \begin{bmatrix} 4 \\ 6 \\ -2 \end{bmatrix} \times \begin{bmatrix} 4 \\ -20 \\ 42 \\ -26 \end{bmatrix}$$

$$\underline{A} \cdot \underline{B} \cdot \underline{C} \cdot \underline{D} = (\underline{A} \cdot \underline{B}) \cdot (\underline{C} \cdot \underline{D})$$

gode della proprietà distributiva

$$\underline{\underline{A}} \cdot \underline{\underline{B}} + \underline{\underline{A}} \cdot \underline{\underline{C}} + \underline{\underline{A}} \cdot \underline{\underline{D}} = \underline{\underline{A}} (\underline{\underline{B}} + \underline{\underline{C}} + \underline{\underline{D}})$$

ma non gode della proprietà commutativa, cioè

$$\underline{\underline{A}} \cdot \underline{\underline{B}} \neq \underline{\underline{B}} \cdot \underline{\underline{A}}$$

pertanto, quando si eseguono dei prodotti, occorre sempre prestare attenzione a non scambiare mai l'ordine delle varie matrici.

Fig. 11.1 Inoltre, la *trasposta di un prodotto* di matrici è uguale al prodotto *delle trasposte* delle singole matrici con ordine scambiato

$$(\underline{A} \cdot \underline{B} \cdot \underline{C} \cdot \underline{D})^T = \underline{D}^T \cdot \underline{C}^T \cdot \underline{B}^T \cdot \underline{A}^T$$

1.3.6 Divisione di matrici

Date due matrici \underline{A} e \underline{B} , il loro quoziente potrebbe indicarsi con

$$C = A / B$$

Dove $\underline{\underline{C}}$ è la matrice quoziente, $\underline{\underline{A}}$ è la matrice dividenda e $\underline{\underline{B}}$ è la matrice divisore. Ricordando la divisione tra numeri, si può scrivere

$$c = a/b = \frac{a}{b} = a \cdot \frac{1}{b} = a \cdot b^{-1}$$

cioè il quoziente di due numeri si può indicare come prodotto del dividendo per l'inverso del divisore. Orbene, nell'ambito dell'algebra delle matrici, viene sempre adoperato questo formalismo, per cui il quoziente di due matrici si esprime sempre come prodotto della matrice dividenda per l'inversa della matrice divisore

$$\underline{C} = \underline{A} \cdot \underline{B}^{-1}$$

La prima conformità che deve essere rispettata è quella che riguarda il prodotto $\underline{\underline{A}} \cdot \underline{\underline{B}}^{-1}$: le colonne della prima matrice devono essere uguali alle righe della seconda.